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The results of investigation of propagation of elastic waves in anisotropic 
media are discussed taking into account the two-dimensional problem of a source 
in an infinite medium and the Lamb problem for a half-plane. The media con- 
sidered in the investigation are those for which the equations of motion under 
plane deformation conditions are characterizedby four constants. 

I. For a number of anisotropic media the equations of motion under plane deformation 
conditions are written in the form [1, 2] 

O~u a~w , cg~u ~ u  
cz-y~x ~ q- c~--~-~ -t- cz-~i-z~ - -  P - ~ -  = - - p a x ]  

(I.i) 
O~w , cg~u a~w 02w 

% ~ -V c2 ~ q- c4 ~ - -  p "ffi'i- = - -  paz f  

H e r e  u ,  w a r e  t h e  c o m p o n e n t s  o f  t h e  d i s p l a c e m e n t s  a l o n g  x and z a x e s ,  p i s  t h e  d e n -  
s i t y ,  t is the time, a~, aa are constants, and f is some function of x, z, t. The con- 
stants cI, c2, c~, c4 are expressed in terms of the elastic constants of the medium. 

In the case of cubic crystals we have 

C 1 : C4 = a l l  , c 2 ~ a12 ~ -  a44, c 3 : a44 

I n  t h e  c a s e  o f  h e x a g o n a l  c r y s t a l s ,  c e r t a i n  t y p e s  o f  r h o m b o h e d r a l  c r y s t a l s ,  and  t r a n s -  
v e r s a l l y  i s o t r o p i c  m e d i a  t h e  c o e f f i c i e n t s  i n  t h e  e q u a t i o n  a r e  e x p r e s s e d  i n  t e r m s  o f  t h e  
elastic constants in the form 

Cl = a l l ,  C2 : a l s  -~- //44, c a = a44, c4 : a s s  

In the case of transversally isotropic media the z axis is perpendicular to the plane 
of isotropy. 

we assume that the coefficients of the equation satisfy the conditions of rigorous 
hyperbolicity and the conditions of positive-definiteness of the elastic energy. In nota- 
tion a, B, y, where 

<z = c3 ) cl ,  f~ = c~ / c4, "e = t + ~f~ - -  c~ 2 / clc4 

t h e  c o n d i t i o n s  o f  s t r i c t  h y p e r b o l i c i t y  a r e  w r i t t e n  i n  t h e  f o r m  

- -  2 1/~-ff~ < y < I + a ~  ( 1 . 2 )  

In the case of cubic crystals the conditions of positive-definiteness of the elastic 
energy are of the form [3] 

a ir  ~ O, a44 > [ a12 I , a l l  Jr 2a12 > 0 ( 1 . 3 )  

I n  t h e  c a s e  o f  h e x a g o n a l  c r y s t a Y s  and  t r a n s v e r s a l l y  •  m e d i a  we h a v e  [3]  

alt > O, all > I al~: [ , (1211 -}- ale) az3 > 2ax3e (i.4) 

We divide the entire ensemble of anisotropic media into groups in the following way: 

i) media whose elastic constants satisfy the conditions [i, 2] 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, 
pp. 143-149, November-December, 1974. Original article submitted April 8, 1974. 

stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording 
or otherwise, without written permission of  the publisher. A copy of  this article is available from the publisher for $15. 00. 

852 



2) media for which 

[2r + l ~ ) - ? . ( i + ~ , ) l > / - l a - t l V y  ~-4cr 
o < ~ <"i, 0<p<i 

The values of the remaining 
direction of the x axis are 

(l.5) 

(z15 > I, 72 > 4a~ (1 .6 )  

3) the rest, in particular, media for which 

1, ~ < 4~1~ 

The first group is quite extensive. It includes many minerals, for example, rock 
salt, sylvite, feldspar, beryl, sandstone, and also ice and a number of crystals of pure 
metals having densely packed hexagonal structure. It also includes all isotropic media, 
which we obtain by putting ~ = B, Y = 2a, in addition to (1.5). 

The media of the third group are also abundant. This group includes crystals of 
pure metals having cubic array (gold, silver, copper, iron, potassium, lithium, sodium, 
lead, bismuth, tungsten, etc.) and also crystals of certain metals with densely packed 
hexagonal structure (zinc, beryllium). 

There are no examples for media of the second group. We shall show below that media 
of this group do not exist. 

2. The determination of the fundamental solution of system (i.i) amounts to solving 
(i.i) in which f = ~(x)~(z)~(t). Here ~(x), 6(z), ~(t) are Dirac delta functions. The 
fundamental solution determines the displacement field excited in the medium by a concen- 
trated pulsed perturbation source. For the media of the first group the solution of the 
problem is given in [i]. For points on the x axis the solution is written in the form 

2 

u = - -  4ate0 _ o n ( s )  K ( O  
2 (2.1) 

pa~ 
u, - ~ ~, {[(0,~ (8) TO (8) ! K (8)]//(t -- t,0} 

n=.l 

c2q,~ (~) c3q,~ (~) - -  c~ + p ~  
o),~ (8)  = c, qn~ (8) -- ca + ps ~ = c~q,~ (e) (2 .2 )  

Co = c~c~ I c~, T , ,  ~ (8) = ( - -  1)"+~ Tn (8), s = x / t 

quantities are given in [i]. The wave velocities in the 

co = V cl / p, cb = co > cb 

Here c a denotes the velocity of the quasilongitudinal wave, and c b denotes the veloc- 
ity of the quasitransverse wave. The quantities qn = qn (~) are related to the roots of 
the characteristic equation of the system ~n = ~n(e) through the formula 

Fn(O) = iOqn(e), e = i / s ,  n =  t , 2  

The functions Pn(8) determine the refraction surfaced (curves). The functions qn are 
give n by the following expressions: 

ql = ( - -  M I  + V M 1  ~ - -  Mz)~ ,  q~ = ( - -  Mx - -  V M 1  ~ - -  M~'I* 
M 1 = (2c3c~  -1 [c22 + c 3 (082 - -  c ~  + c4 (082 - -  cl)]  (2 .3)  
M~ = (08 ~ - c ~ ( p s  ~ - c  0 / c 3 c ~  

The arrangement of the branch points of the radicals in (2.3), the form of functions 
~n(8) on the real e axis, and the geometry of the wavefronts for the media of the first 
group are discussed in [i, 2]; for the media of the third group they are discussed in [4], 
and the essential differences between the media of the first and third group are indicated. 

We consider the solution near the wavefronts intersecting the x axis at the points 
xa = cat,.x b = cbt, respectively. 
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From (2.3) and 

Let 0r 2 = ci -- ~, 

(2.2) we obtain 

t i m  qz (e) = O, l i r a  (% (e) = l i r a  [c~ / (cl - -  c3)] ql (8) 
6~C a ~."+C a q l " ~  

6 > 0 ,  ~ § 0 .  F r o m  ( 2 . 2 )  we  o b t a i n  t h e  f o l l o w i n g  e q u a t i o n  f o r  q ~ :  

(C3ql  2 - -  6) [C4ql  '~ "[- (C 1 - -  C8) - -  ~ !  "3 C C22ql  "2 = 0 ( 2 . 4 )  

For ~ § 0 we have 

Neglecting the quantity q: 

sion with an accuracy up to 6: 

p 8  s --+ C I ,  8 - - > C  a , ql s--> 0 

compared to qx* in (2.4), we obtain the following expres- 

ql ~ = AS, A m  
ca (cl--c~)+c,~ " 

For the investigated case of the media of the first group c~ > c3, i.e., 

(c~ -- c3) > O, c8 (ci- c8) + c? > 0 

For values of e close to C a we obtain 

ql 2 ~ A 6 ~ A x ~  , ~ = 6 / p ,  A I ~ A p  
6 = cl - -  ps  ~, ~ t  ~ = (cat - -  eO (cat.+ st) 

For s § c or x § x we have a a 
ql (e) --> B (xa  - -  x) ' /"  

where xa = cat, x is the instantaneous coordinate, x = st. 

Considering that T I(e), K(s) are finite and nonzero for e = ca, for u and w we obtain 

u (x,:O, t) ~ C (xa  - -  x)-V., w ( x ,  O, 0 ~ D ( x a  - -  x)"i', x ~ x .  

where C, D, are independent of hx, hx = x a -- x. 

Similarly, in approaching the front of the quasitransverse wave we find that w(x, 0, 
t) increases as (Xb -- x) -I/2 At the point x = x b u(x, 0, t) is finite and nonzero. 

Near the wavefronts on the x axis the solution in the case of anisotropic media has 
the same behavior as in the case of isotropic media. It can be shown that on approaching 
the wavefront along any ray passing through the point x = 0, z = 0 the solution has similar 
behavior. This result is valid also for the media of the third group. Near the boundaries 

of lacunas the solution behaves as near the wavefronts. 

For all media of the first group, including isotropic media, the qualitative behavior 
of the displacement curves is the same for the points on the coordinate axes. Examples of 
the computation are shown in [i]. For media in which c~ and c~ have close values, we find 

that the closer the value of the coefficient h A = (c~ -- c3)/c2 gets to unity, the smaller 
is the difference between the solution at the coordinate axes for this anisotropic medium 
of the first group and the solution for the isotropic medium with the same values of coef- 
ficients c~ and c3, i.e., with the same velocities of propagation of longitudinal and trans- 

verse waves equal to c a and c b. 

In the case of media of the third group a large diversity of the forms of the dis- 
placement curves is observed for points on the coordinate axes and on rays passing through 

the point of application of the stress depending on whether functions Pn(0) and On(~) be- 
long to the second or third type (according to the classification in [4]) and on the values 

of ~, ~ compared to unity, 

3. Let us consider the Lamb problem for a half-space. For media of the first group 
the solution of the Lamb problem (action of a concentrated pulsed load on a half-plane) is 
given in [2] and for media of the third group, in [4]. The displacement curves at points 
of the boundaries are also given for some materials. 

We consider the Rayleigh equation for each of the three groups of media and the solu- 
tions near the wavefronts and near the Rayleigh phase of the displacements. 
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The Rayleigh equation for an anisotropic medium is written in the form 

n - - - - b q V  t / - - V l  / - = o ,  = i / ( 3 . 1 )  

The function of ~ occurring in the left-hand side is called the Rayleigh function. 

According to [5], the condition for the roots of Eq. (3.1) to be real is written in 
the form c~c~ > (c2 -- c3) 2 In notation a, B, y this inequality becomes 

>2a~-2V~V!+ a~--y (3.2) 

Considering the condition of hyperbolicity (1.2) and the condition y2 > 4aB, for 
media of the first group we find that inequality (3.2) should be considered only in the 
interval 2~ < y < i + ~B. 

The fulfillment of inequality (3.2) is equivalent to the statement that for given ~, 
the function of y occurring in the left side will be larger than the function in the 

right side for all values of y in the investigated interval. 

Let us consider the plane fy. The function fl = Y corresponds to a straight line 
passing through the coordinate origin at an angle h = v/4 to the y axis. The function 

takes the following values at the ends of the interval: 

In the case of media of the first group ~B < i, 2aB < 2 ~/~ and, hence, 

Considering that f2' = (~/~i + aB- Y) > 0, we find that in the interval 2~ < y < 
i + aB f2 increases monotonically and lies below the straight line f~ = y. Therefore, in- 
equality (3.2) is always satisfied for media of the first group, i.e., the roots of the 
Rayleigh equation are always positive. 

In the case of media of the second group 

f~ = 2 a l  3 for ?= I + ~  

In the interval 2~ < y < 1 + ~B f2 is again a monotonically increasing function, 
and at y = 2~ the values of fl and f2 are equal. 

Since aB > I, we have 

t + c*I~ < cz~ + al~ ~ 2~z~ 

and therefore at the point y = i + ~ f~  is greater than f ~ .  Thus, either the curve for 
f2 lies entirely above the straight line fx = Y, or they have a point of intersection, 
i.e., at some point y = y,, 

1~ (?,) =I~  (?,), 2 l/-g~ - < ~ ,  < i + ~ (3 .3)  

From Eq. (3.3) we obtain y, = 2/~, i.e., the curves for f~ and f~ do not intersect 
anywhere except at the point y = 2~ lying at the end of the interval. Hence, it follows 
that for media of the second group inequality (3.2) is not satisfied at any point of the 
interval 2 ~/~ < y < I + ~, i.e., in the case of media of the second group the Rayleigh 
equation does not have real roots. Putting ~ = iv, we find that the function R(~) changes 
sign in the interval 0 < ~ < =, and therefore the roots of Rayleigh equation lie on the 
imaginary axis of the ~ plane. 

From the conditions of positive-definiteness of the elastic energy (1.3), (1.4) we 
obtain the inequality 

c~c~ > (c~ - c~)~ 

i.e., for real media the condition for the roots of the Rayleigh equation to be real are 
always satisfied, and therefore media of second group do not exist. The solutions of Eqs. 
(i.i) under conditions (1.6), (1.2) can be of interest only as some hyperbolic solutions. 
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If the displacement curves are plotted for the points of the free boundary in the Lamb 
problem, then we find that the displacements are finite everywhere, and the function w(x, 
0, t) has its maximum value at the point of application of the force x = 0. In the case 
of real media the displacements at the points of the surface z = 0 are maximum (become 
infinite) for x = cRt, where c R is the velocity of the Rayleigh wave. 

Following the above arguments it can be shown for media of the third group that the 
condition for the roots of the Rayleigh equation to be real is always satisfied. 

Let us consider media of the first group. Near the leading front of the perturba- 
tion wave propagating in the half-plane z ~ 0 the solution of the Lamb problem is finite 
at the points of the free boundary z = 0 and becomes zero on the front x a = cat. On ap- 
proaching the perturbation wavefront along the ray passing at an angle to the x axis the 
radical component of the displacements increases rapidly going to infinity on the front. 
With the decrease of the angle (the angle formed by the ray originating from the point 
z = O, x = 0 with the x axis) to zero the curves of the radial displacements for ~ # 0 
make a continuous transition to the curve u(x, 0, t). 

The structure of the perturbation wave front at the interior points of the half-plane 
(in particular, passing of the radial component of the displacements to infinity) is de- 
termined by the derivative ~el/St where el is the root of the equation t -- elx -- ~:(el)z = 
0. This derivative occurs in the solution as a factor [2, 4]. 

In the case of isotropic media we have 
001 t ( s i n ~  

- -  - . . . .  ~ H 1 -  ~H~ 

R ~ = x ~ +  z ~, x =  R c o s ~ ,  z =Bsin~, a = ] /-~-Cl 

The growth of the radial comPonent to infinity on approaching the wave front (t = aR) 
is caused by the component H2. With the increase of ~ the contribution of H2 increases 
and decreases rapidly when ~ tends to zero, becoming zero for ~ = 0o 

S 

0 

-5 

1 

Fig. 
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The qualitative behavior of the contributions to the radial com- 
ponent of the displacements near the wavefront coming from the terms 
H: (curve I) and H2 (curve 2) (total dependence for angle ~ = 2 ~ is 
shown in Fig. 2) is shown in Fig. i for ~ = 2 ~ for the case of an iso- 
tropic medium with the velocities of propagation of the waves equal 
to c a = 4500 m/sec, c b = 2500 m/sec. 

For larg e values of angle ~ the radial component of the displace- 
ments near the wavefront (t = aR) has the form of curve 2 in Fig. I, 
since the contribution from H2 predominates. For ~ = 0, i.e., at the 
points of the surface z = 0, the radial component [equal to u(x, 0, t)] 
near the point xa= cat has the same behavior as curve i in Fig. i, 
since the contribution of H2 is zero. 

These results are valid also for the solution near the leading 
front of the perturbation wave in all media of the first group. Just 
as in the case of isotropic media on approaching the perturbation wave 
front the radial and tangential components vary proportional to (R~-- 
R)-~/2 or (R a -- R) :/2, respectively, where R a is the position of the 
wavefront, and R is the instantaneous coordinate (for ~ = const). 
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In the case of media of the third group the solution on the front vanishes at the 
points of the surface. The behavior of the displacement curve at the surface points or 
at the interior points of the half-plane may be very different from the media of the first 
group. Some results for the surface points are given in [4]. 

Let us consider the characteristics of the form of the radial displacement curves for 
media of the first and third groups at the interior points of the media taking the depen- 
dence u r = Ur(T) as an example, where u r is the radial component of the displacements, and 
T is nondimensional time, T = t/aR. The dependence ur(T) represents seismograms of radial 
displacements for points lying on rays passing at an angle ~ to the x axis. In the vicinity 
of T = TR, where T R is the time of arrival of the Rayleigh displacement phase at the given 
point, both quasilongitudinal and quasitransverse waves contribute to the displacements. 

The contribution of each wave may change significantly on passing over from one medium 
to another. 

The displacement curves for each wave are shown in Fig. 3 (curve I -- quasilongitudinal 
wave, curve 2 -- quasitransverse wave), indicating the contribution from each of the waves 
to the total displacement. The curves are plotted for an isotropic medium (c a = 6260 m/ 
sec, c b = 3080 m/sec) in the vicinity of the point T = T R for points lying on the ray pass- 
ing at an angle ~ = 2 ~ The form of the curves is typical for media of the first group; 
the relation between them is retained, since in the vicinity of T = T R for ~ = 2 ~ the 
total pattern for media of the first group has the form shown in Fig. 4 (quantitative data 
are not given in the figure, since they are not of interest). 

The curves showing the contribution of each wave to the magnitude of the radial dis- 
placements in the vicinity of T = T R at the points on the ray with ~ = 2 ~ are shown in Fig. 
5a for the case of zinc (third group of media, ~ < i, B < i; curve i -- quasilongitudinal 
wave, curve 2 -- quasitransverse wave). 

Similar curves for a model anisotropic medium (third group, ~ = 3, B = 0.25, y = 1.74) 
are shown in Fig. 5b. 

As seen from the curves in Fig. 5, in the case of media of the third group the nature 
of the displacements at the interior points of the medium can be very different from the ~ 
first group. 

The author thanks S. A. Khristianovich and E. I. Shemyakin for attention to the work. 
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